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An approximate analytical expression is obtained for the solution of the system of 
equations describing the growth of vapor bubbles on a solid substrate in surface 
indentations. 

This paper is a continuation of the author's earlier analysis [i]. The law of motion 
applicable to the surface of a bubble lying within an indentation on a rough solid substrate 
is determined by solving the system of equations (6) and (14)-(17) taken from [I]. In order 
to avoid certain mathematical difficulties (not of a fundamental nature) we shall assume that 
in Eq. (17) of [i] ~ = 0. The temperature of the vapor in the bubble is determined by the 
expression T,(t) = To + @ (0, t) derived from a solution of Eq. (6) on the basis of the in- 
tegral method of Tolubinskii [2, 3]. The Green's function based on this method [2, 3] is 
given in [4]. 

The saturated vapor pressure is related to T, by the equation 
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derived from (16), while the vapor pressure in the bubble is 

Pb ( / ) = A  T.z s(t)m(t)(t) , A = n~I3--RR ( z_~__] ) 2. . (2) 

The law of mass variation of the vapor in the bubble which enters into Eq. (2) may be 
obtained together with the law of motion of the bubble's surface from the system of equa- 
tions 
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f~ (t) = A T 2  2. 

An e x a c t  s o l u t i o n  o f  t h e  s y s t e m  (3 )  i s  h a r d l y  p o s s i b l e .  

! 

" exp T ,  

Let us assume that in the equation" 
for m(t)z(t) = z2 +y(t-to). The value of the coefficient y may then be refined on the basis 
of the resultant solution for z(t). To a first approximation y may be determined from the 
equation z2 + Y(tz--to) = Zo + ro, in which the instant of time tl is found on the basis of 
the experimental law z*(t), using the equatio n z*(tl) = zo + ro. Another way of determining 
y not depending on the results of the experiment will be indicated shortly. After this the 
solution of the equation 
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obtained by the method of Sokolov [5], has the following first-approximation ferm: 
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If necessary higher approximations may also be obtained for m(t) on the basis of [5]. 

We write the equation for z(t) in the form 
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The right-hand Side allows for the fact that the vapor pressure in the bubble is variable in 
time and depends on the law governing the inflow of heat to the bubble and the motion of its 
boundary. We shall seek the solution of (6) in the form of a sum comprising the solution of 
the homogeneous equation with the corresponding initial conditions and a term allowing for 
the influence of the source ~o(t). 

By substituting the variable z' = dz/dt = p the homogeneous equation for z is reduced 
to an Abelian equation of the second kind. The substitution u(z) = pzq brings this to the 
form 

1 

uu ' - t -nz  2 u + D z + F z  ~ = 0 .  (7) 

We may simplify this equation by assuming that z-l# ~ -~ -x/2 [~(z2 + Zo +ro)] -I# while z 2 Zav = 
ZZav. If we apply the parametrlzation method to the equation obtained in this way [6], we 
find that 
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This leads to the relationship 
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and an approximation relation between z and t in the form 
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The constants CI and C2 are found from the initial conditions t = to, z = z2, dz/dt = 
E(t)Iz=z2= 0. After some calculations we find 
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As a result of this the z(t) relationship for ~o(t) = 0 follows from the equation 
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The influence of the source To(t) may be taken into account by convoluting it [7] with the 
fundamental solution of the linearized equation (6). We write the latter approximately in 
the form 
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Then we have P(t--t') = L-16(t--t'), where L -~ is an operator inverse to the original one. 
A f t e r  c a r r y i n g  o u t  t h e  c a l c u l a t i o n s  

O ( t - - t ' )  {I, x > O ,  
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Consequently, the approximate solution of Eq. (6) takes the form 
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where zo(t) is expression (12) solved for z. In the particular case of ao/N=l 
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The next approximation for z may be obtained after refining the coefficient y on the 
basis of Eq. (15). 
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In an analogous way we may obtain an approximate solution for the more complicated sys- 
tem of equations (18)-(23) in [i]. The law of variation of the bubble radius r(t) in this 
system is qualitatively described by the solution (15). If we consider the process taking 
place in a single vaporization center, not from the instant at which heat is first conveyed 
to it as earlier, but from the instant at which the indentation is filled with the gas-vapor 
mixture, the analysis is slightly simplified. The high initial superheating of the liquid 
(for molten metals about 2000C in the absence of dissolved gases) is greatly reduced after 
the separation of the first bubbles because the indentation is then partly or completely 
filled with the gas--vapor mixture. 

The system of equations proposed in [i] also (in a particular case) describes the growth 
of a vapor bubble in a large volume of superheated liquid at a temperature To > T s. In this 
case the problem is spherically symmetrical with respect to the center of the bubble, so 
that the boundary condition for the heat-conduction equation at x = 0 vanishes. In order to 
find T(r, t) in this case we may use the method of perturbations employed in [9] in order to 
analyze the radiative cooling of substances of arbitrary shape and variable volume. Here 
the Green's function of the second boundary problem of heat conduction in an unbounded liquid 
surrounding the bubble derived from [4] takes the form 

[ r--r'--rh(t) ] [ r-}-r'--rb(t) ] 
e x p  - -  ~ - -  e x p  

4 a  ( t  ~ t ' )  4 a  ( t  - -  t ' )  r(r, r', t, t ' ) =  (18) 
8 ~ r '  [ r  - -  r b ( t ) ]  [na (t - -  t')] I/'- 

Here a is the thermal diffusivity of the liquid; r' and t' are the radius of a single instan- 
taneous spherical heat source and the instant of its appearance. 

In analyzing the growth of a vapor bubble on a heated surface enveloped in a flow of 
liquid, the heat-conduction equation in the flow of liquid must be added to Eqs. (18)-(22) 
of [i]. In order to analyze the temperature pulsations in the solid wall under a unit cen- 
ter of vaporization, the proposed system of equations should be supplemented by the heat- 
conduction equation in the solid wall. The system of equations from [i] may be used to an- 
alyze cavitation processes in the superheated liquid. In this case we must add the diffu- 
sive mass flow arising as a result of gases dissolved in the liquid (see [i0], for example) 
to the right-hand side of Eq. (20) taken from [I]. 

The foregoing time dependence of the radius of the growing bubble depends considerably 
on the physical properties of the liquid, its pressure, and the conditions underlying the 
flow of heat to the vapor bubble. It follows from Eqs. (12) and (15) that ~, ~, 0o and P 
enter into thepower index attached to z in a functional dependence t = F(z). The resultant 
z(t) law differs from the widely employed approximate law z ~. From the solution of the 
system of equations we also derive the time dependence of the remaining parameters charac- 
terizing the growth of the bubble; the latter cannot be obtained from the models proposed 
by other authors. 
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